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Novel targets and entities inducing 
cellular apoptosis and anti-
angiogenic activity in retinoblastoma 
management
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ABSTRACT

Retinoblastoma (Rb) represents a primary pediatric cancer, which if left untreated can invade to the nervous system that primarily occurs 
due to loss of the RB1 gene. Several clinically available therapies are used for the management of risk factors associated with Rb including 
chemotherapy, brachytherapy, external beam radiotherapy etc. However each treatment has its own side effects. To meet with the best 
approaches in order to minimize these side effects novel targeted therapies have been developed that inhibits tumor in an angiogenic-
dependent manner. This review provides the insights about some targets and the pharmaceuticals with their possible mechanism of action 
that targets angiogenesis and induces apoptosis. The targets include activation of p53 via controlling mouse double minute homolog 2, 
survivin, and thrombospondin-1. Entities described in this review include 5-aminoimidazole-4-carboxamide ribonucleotide, niclosamide, 
bevacizumab, aflibercept, genistein and quercetin and their potential in treating Rb. Also, the signaling pathways that are affected in 
response to these drugs like activated protein kinase pathway, Wnt/β-catenin pathway, vascular endothelial growth factor and its receptors 
has also been discussed.
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Introduction 

Retinoblastoma (Rb)- origin and indication

Rb is an intermittent intraocular invasive cancer which is 
capable of severely metastasizing central nervous system 
via invading sclera and post laminar optic nerve [1,2]. Rb has 
higher prevalence in infants and is ranked at the topmost, 
with virtual frequency of 3% among existing pediatric 
malignancies [3]. In 2009, the expected death rate due 
to this evil was about 4,000 per year across the globe [4]. 
Rb is an autosomal disorder that predominantly ensue as 
a consequence of mutations in RB1 gene or amplification 
of MYCN oncogenes [5]. RB1, a gene that is placed on 
chromosome no. 13, possesses the potential to prevent the 
dissemination of tumor [6]. Rb could either be inherited or 
acquired. Hereditary Rb involves biallelic inactivation of RB1 
gene (mutation transmitted through defective allele in germ 
cells and the succeeding loss of the second allele somatically) 
and might perhaps lead to unilateral or bilateral retinal 

cancers. Whereas, purely somatic variation is the reason for 
sporadic Rb which only leads to unilateral tumors whether 
due to RB1 gene inactivation (biallelic inactivation) or due to 
the MYCN oncogenes [7,8]. Adding to these, several other 
hereditary mutations that are either DNA-linked or linked 
to other factors and formerly found to have regulatory roles 
in succession of phases happening in cell division cycle or 
controlled cellular death and/or angiogenesis also plays a 
basic role in the development and dissemination of tumors 
[9,10]. For comprehensive review regarding heterogeneity 
in Rb and the involvement of RB1 in cell cycle and tumor 
progression see (heterogeneity in Rb: a tale of molecules and 
models) [11].

According to a research study undertaken in South Western 
China in 2016, this tumor is indicated by conditions like 
leukocoria which is then followed by proptosis, lacrimation, 
ocular pain, strabismus etc. [12].

Therapeutic approaches for treating Rb depends upon the 
diagnosis stage and invasiveness. Enucleation, chemotherapy, 
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radiotherapy (external beam radiotherapy mostly used) and 
adjunctive therapy (cryotherapy/laser photocoagulation) are 
generally in practice [13]. However, the use of these treatment 
modalities possibly will lead to the vision loss or impairment 
(relapse) as well as the development of secondary tumors 
(as a result of radiation therapy) [14]. Therefore, alternative 
therapies must be needed to repress tumorigenesis [15].

Novel therapeutic targets for Rb 

miRNA-31 and miRNA-200a

MicroRNAs are RNA transcripts that are relatively small 
and are not expressed as protein; however, they have the 
potential to facilitate and control the expression of a protein 
from specific genes, and their divergent expression often 
leads to ailment. MiRNA-31 has presented its anti-tumor 
activity in many cancer models [16].

MiRNA-200a has its place in the family of miRNAs that 
substantially regulates cancer progression, entry or exit of 
a cell in quiescent state and differentiation of pluripotent 
neuronal cells by regulating numerous oncogenes [17]. MiR-
200a pursues prominent concern because it down-regulates 
Wnt/β-catenin pathway as Wnt ligand in stimulated form 
aggrandize the growth of population of highly malignant 
cancerous stem cells of within Rb cell cultures [18].

For the purpose of controlling Rb, anticipating miRNA-31 
and/or -200a as a possible therapeutic target is reassuring 
in order to put a limit on the expansion of this tumor which 
accordingly decreases the likelihood of metastasis of retinal 
cancer cells to other ocular structures. Exploring such targets 
is critical since literature indicates the progression of retinal 
carcinoma via invading optic nerve as a significant clinical 
feature with unreceptive prognostic value for the subject. 
Exploration studies embark on for prevention of Rb via 

these micro-RNAs signposts that if the genes coding for such 
functional RNAs (miRNA-31 and miRNA-200a) are down-
regulated, then Rb proliferation occurs through selective 
downregulation of targets linked with prompt cell division 
[19].

Thus, both of these miRNAs potentially represent novel 
targets to preclude the metastasis and invasion of Rb as 
these inhibits cellular exponentiation when their expression 
is enough [19].

Survivin

Survivin, the smallest member of the family of inhibitors of 
apoptosis proteins, is a candidate for targeted therapy of 
cancer. It is a multi-task protein that has been allocated to 
accomplish varied functions in different cellular organelles 
including regulation of mitosis and inhibition of apoptosis. 
The expression level of survivin is virtually negligible in the 
normal cells but it becomes wrong way up in tumor cells [20-
22]. Former investigation gives the evidence for the presence 
of survivin in Rb patients [23]. The amount of the protein is 
found to be greater in aqueous humor and serum of them 
affected individuals with retinal cancer [24]. Numerous 
approaches have been employed to lessen the expression 
of survivin to get the improved treatment outcomes. The 
approach used is reliant on the type of tumor. For instance, 
experiments have been designed to target survivin using 
imidazolium-based agent, sepantronium bromide (YM155) 
to improve healing for Rb patients [25]. Likewise, surviving 
level in tumor cells can be lowered via silencing the gene 
expression coding for this protein, at mRNA level by specific 
small interfering RNAs (siRNA). Handling of Rb through this 
target could force cancerous cells to become sensitive for 
chemotherapy and constrains tumor invasion [24]. 

Figure  1. The mutations leading to Rb development.
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Thrombospondin-1 (TSP-1)

TSP-1, a protein that is secreted into the extracellular environment 
has differential expression in different types of tumor cells and 
is found to exhibit its effect via inhibiting angiogenesis [26]. 
Although there are controversies about the level of TSP-1 in 
tumors whether it inhibits tumor via anti-angiogenic activity 
or promotes tumor growth via neovascularization. Previous 
literature about TSP-1 indicates that the bone marrow stromal 
cells-based secretion of TSP-1 improves the survival of retina 
prospecting the TSP-1 a captivating target for Rb therapy 
securing the retina as well [27].

p53 activation

The progression of Rb is considered to be cone precursor 
dependent tumor. The cone features that are obligatory for Rb 
invasion includes increased expression of the oncogenes such 
as MYCN and mouse double minute homolog 2 (MDM2) [28]. 
Based on the retrospective findings, p53 is discovered to be in 
inactive form in nearly 75% of Rb patients [29]. p53 inactivation 
occurs due to the accumulation of MDM2 in retinal cancer 
cells which then restrains p53 mediated apoptosis. Using 
the inhibitors for MDM2 (Nutlin-3a) supports the concept of 
targeted therapy in Rb where MDM2 down-regulation leads to 
the activation of p53 tumor suppressor pathway [30].

Target Molecules Inhibiting Tumor-Angiogenesis and 
Inducing Apoptosis as Latest Therapeutics for Rb 
After the mid-1900s, Folkman et al. [31] revealed angiogenesis 
as probable cause for tumors. Progression of Rb is discovered 
to be angiogenesis dependent. Thus, angiogenic inhibitors 
may suppress the development of retinal carcinoma [32].

5-Aminoimidazole-4-Carboxamide Ribonucleotide 
(AICAR); an Activator of Activated Protein Kinase 
(AMPK) Pathway
AICAR, an activator of AMPK, has revealed as an anti-
cancerous agent against multiple myeloma cells [33]. 
Arithmetic figures of the research outcomes indicate the 
contribution of AMPK in cancer [34]. AMPK appear to react in 
a number of cell behaviors and lies at the key point of tumor 
suppressor network [35]. Further investigations in cancer 
biology have found that the progression and multiplication 
of Rb cells can be suppressed by pharmacological activation 
of AMPK [36]. AMPK is a serine/threonine heterotrimeric 
protein kinase and has three subunits i.e., α, β, and γ so 
as to make tissue-specific complexes [37,38]. Adenosine 
Monophosphate (AMP) (an adenosine nucleotide) is a direct 
activator of AMPK and binds to its γ-domain. Among the 
three known upstream regulators of AMPK, Liver Kinase B1 
(LKB1) is found to have tumor suppressing potency indicating 
AMPK as a probable target for tumor control [39].

AICAR, after administration, is transformed to Structural 
analog of AMP (ZMP), an imitator of AMP, and binds to the 
γ-subunit of AMPK. Advances in research have exhibited 
that AICAR can be utilized to regress tumor cell proliferation 
in Rb by S-phase arrest, inducing apoptosis and repressing 
neovascularization [40]. AICAR activated AMPK leads to the 
increased expression of p21 which is a cell cycle inhibitory 
protein. It also partially inhibits mammalian target of 
rapamycin (mTOR) pathway [36].

Niclosamide: a suppressor of Wnt-signaling pathways

Niclosamide [(5-Chloro-N-2-Chloro-4-Nitrophenyl)-
2-hydroxybenzamide], is approved by Food and Drug 

Figure 2. Proposed mechanism of action of AICAR in Rb.
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Administration (FDA) as an anti-helminthic drug against tape 
worm infections [41].

High throughput screening has exhibited that niclosamide 
display great anti-tumor potential as it has been shown to 
inhibit cellular proliferation in various types of cancers [42,43]. 
As an anti-cancerous agent, niclosamide inhibits one of three 
signaling pathways: Wnt-signalling pathways (Wnt/β-catenin 
pathway) and the suppression of Signal Transducer and 
Activator of Transcription 3 (STAT3) and NF-ĸB pathway [44].

Recent published literature indicates the potential of 
niclosamide against Rb demonstrating that it effectively 
hinders angiogenesis thereby decreasing retinal cancer 
invasion. The preclinical assessment has shown that 
niclosamide has had its inhibitory effect only on the 
Wnt/β-catenin pathway while the STAT3 pathway remains 
unaffected in Rb upon the administration of niclosamide. The 
Wnt signaling pathway regulates tumorigenesis, metastasis, 
cellular differentiation and apoptosis [45]. The canonical Wnt 
signaling proceeds in two ways:

• When there is shortage of Wnt ligand, the cytoplasmic 
β-catenin is gripped by four components which 
include tumor suppressor Adenomatous Polyposis 
Coli); GSK3β (glycogen synthase kinase-3β (APC), axin, 
GSK3β, and casein kinase 1 (CK1). These components 
form a complex which phosphorylate β-catenin 
leaving it for proteasomal degradation and inhibiting 
its nuclear translocation [46].

• While Wnt signaling is active due to the availability of 
Wnt ligand, the ligand binds to the frizzled receptors 
and its co-receptor low density lipoprotein-related 
protein receptor 5/6 (LRP 5/6) to control the level of 
β-catenin [43]. LRP is phosphorylated by GSK3β and 
CK1 which than appoints Dishevelled-2 (Dvl2) protein 
for the inactivation of destruction complex [46]. The 
amount of β-catenin elevates in the cytoplasm as the 
outcome of this signaling and later on, is translocated 
in to the nucleus where it interrelates with T-cell 

factor (TCF) or lymphoid enhancing factor)VEGF 
(vascular endothelial growth factor (LEF) to regulate 
the transcription of target gene [41].

Niclosamide suppresses the Rb by restraining the 
components like LRP6, Dvl2 and β-catenin of the canonical 
Wnt/β-catenin pathway inhibiting angiogenesis and inducing 
cell senescence. Also, combined therapy using niclosamide in 
conjunction to carboplatin (a chemotherapeutic agent) could 
be employed to boost its inhibitory potential [41].

Bevacizumab: targeting vascular endothelial growth 
factor (VEGF)

Angiogenesis is one of the major factors contributing to the 
complex process of cancer development [47]. Rb has also 
been characterized as tumor with a compact network of blood 
vessels [48]. Numerous factors have been proposed to take part 
in neovascularization of the ocular pathologies, but VEGF and its 
receptors vascular endothelial growth factor Receptor (VEGFR) 
are found to be the most prevalent in this regard [49]. Several 
studies have revealed that the VEGF level elevates in intraocular 
malignancies [50,51]. On account of these outcomes, anti-
VEGF antibodies as a therapeutic agent thought to improve the 
management of Rb because of clinical indication [52]. 

Bevacizumab is such an FDA- approved genetically 
engineered humanized biopharmaceutical (monoclonal 
antibody) for metastatic colorectal cancer that has the 
potency to interact with all isoforms of VEGF. Although, 
bevacizumab has not been approved for Rb; however, modern 
findings signify its promising therapeutic ability to target VEGF 
mediated angiogenesis [49]. Bevacizumab not only articulate 
its effect via constraining neovascularization but also induces 
modification in vascular function and tumor blood flow [53]. 
Rb cells undergo differentiation via the expression of vascular 
endothelial growth factor-2 (VEGFR-2) and a neurotrophin 
receptor that is activated upon VEGF treatment [54]. 
Captivatingly, bevacizumab displays its potential by inhibiting 
the differentiation of Rb cells via hindering the activation of 

Figure 3. The chemical structure of niclosamide. 
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extracellular signal-related kinase ½ (ERK ½) [49]. ERK pathway 
is found to have the leading role in endothelial cell proliferation 
in response to VEGF [55]. Additionally, bevacizumab can 
greatly reduce the development of neurite outgrowths of 
differentiated Rb as a result of the inhibition of neuro-filament 
and shank2 expression [49]. 

For the treatment of advance stage retinal carcinoma, 
bevacizumab is used in conjunction with carboplatin that 
inhibits ERK 1/2 and Akt pathway inducing cellular apoptosis, 
cell cycle arrest, and inhibiting angiogenesis [47]. While, 
bevacizumab alone, only inhibits cellular differentiation 
though not provoke apoptosis [49].

Aflibercept: Another VEGF Inhibitor
Aflibercept is a potent angiogenic inhibitor, targeting multiple 
VEGF ligands [56]. It represents a next generation therapeutic 
agent which is produced by the recombination of a constant 
region (Fc) of human immunoglobulins G (IgG) antibody 
amalgamated to portions of immunoglobulins (Ig) i.e., second 
Ig domain of VEGFR-1 and the third Ig domain of VEGFR-2 
[57,58]. Aflibercept works as a decoy receptor and is preferred 
over bevacizumab in that, it has prominent affinity to interact 
with VEGF-A compared to bevacizumab and even its natural 
VEGFR receptors [57]. Aflibercept is an approved drug in USA 
and Europe for metastatic colorectal cancer. Now, clinical 

Figure 4. Proposed mechanism of action of niclosamide upon the signaling pathways in Rb.

Figure 5. Bevacizumab, a monoclonal antibody, targeting VEGF or its receptors. It also 
targets shank2 and interferes with its expression. 
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research studies are exploring its use for the management of 
pediatric retinal cancer [59]. Reviewing the literature, it has 
been demonstrated that the expression of VEGF protein from 
its corresponding mRNA mediated Rb cellular proliferation 
[60]. Aflibercept not only hinders the formation of new 
vessels in retinal cancer cells but also suppresses the existing 
vasculature [58]. It also reduces the invasion of tumor to the 
choroid and represses tumor via targeting VEGF and inducing 
apoptosis. The decrease in angiogenesis in Rb upon the 
administration of aflibercept is associated with increase in 
cellular death analogous to AICAR [61]. 

Genistein: Up-Regulating miR-145
Genistein, an isoflavone extracted from soy plants, is a 
biologically active compound with chemical formula 5, 
7-Dihydroxy-3-(4-hydroxyphenyl) chromen-4-one [59,62].

The consumption of soy compounds including genistein 
have been reported in numerous studies having anti-metastatic 

potential particularly in prostate and breast cancer [63]. 
Comprehensive studies about the probable mechanism of 
genistein indicate that it affects most of the proteins concerned 
with the cancer progression and a potent inhibitor of Nuclear 
transcription Factor Kappa Beta (NF-κB) and Akt pathways that 
controls cellular proliferation [64]. 

Emerging research trends in the management of Rb 
have depicted clinical potency of genistein. Genistein have 
the strength to conquer the propagation and dissemination 
of retinal cancer cells via up-regulating miR-145 [65]. MiR-
145 has been defined as the candidate tumor suppressor 
microRNA and regulates different genes depending upon 
the type of carcinoma [66]. In Rb, genistein mediated 
up-regulation of miR-145 induces its inhibitory effect on 
ABCE1 gene (oncogenic in nature) which evoke cell cycle 
arrest, induces partial apoptosis and prevent colonization of 
metastatic retinal cancer [65].

Figure 6. The chemical structure of genistein.

Figure 7. The drawn flow chart shows the proposed mechanism of action of 
Genistein in Rb. MiR-145 in Rb targets ABCE1 gene causing DNA strand break 
that induces apoptosis and represses proliferation [65].
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Quercetin: An Anti-Tumor Flavonoids 
For cancer medication, light has been shed on the role of 
anticipated naturally occurring compounds from plants for 
instance polyphenols. Quercetin is such a plant extract of 
distinctive flavonoid nature, whose anti-tumor activity has 
been documented for different types of cancer including 
lung, prostate, colon cancer etc. [67]. Experimental analyses 
for the underlying mechanism of quercetin dictate its anti-
tumorigenic character via suppression of angiogenesis, 
proliferation and invasion [68]. In 2017, two researchers 
along with their co-workers have presented their individual 
reports exploring the potential of quercetin against Rb.

According to Liu and Zhou, quercetin is capable of 
suppressing Rb via cell cycle arrest at G1 phase which 
reduces cell viability. It can also encourage apoptosis by 
up-regulating mitochondrial membrane potential mediated 
synthesis of cytochrome c which subsequently activates the 
caspase-dependent apoptotic pathway [69]. Caspase-9 and 
caspase-3 play major role in this regard [70]. It has also been 
observed that quercetin activates p38-mitogen activated 
protein kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK) 
signaling pathways that stimulate the caspases to execute 
apoptosis [69].

In context of the report presented by Song et al. [71], 
quercetin performs its function in an angiogenic-dependent 
manner and inhibits VEGFR, reduces cell viability and induces 
cell death.

Conclusion
Among the pediatric malignancies, Rb tumors have a 
prominent figure of cases annually. The tumor is marked 
by multiple symptoms with leukocoria being the chief 
indication. Rb can protrude to the nervous system resulting 
in the death of the patient. The survival rate in this type of 
tumor in very low if the disease is not diagnosed in initial 
stages. Late diagnosis and low applicability of treatment 
modalities in the developing and underdeveloped countries 
leads to poor prognosis. In intense cases, the only treatment 
option left is enucleation. Literature evaluation provides 
evidences about angiogenic-dependent progression of Rb. 
Using traditional chemotherapy produces more toxic effects 
in pediatric patients as their immune system is not well-
matured. So, angiogenesis inhibitors smooth the progress 
of targeted therapy for Rb tumors. These inhibitors offer the 
management of the disease with much reduced side effects 
on healthy cells as most of the compounds used in this regard 
belongs to natural source such as phyto-extraction based 
quercetin and genistein. There are also other agents and 
targets available that can work to inhibit retinal carcinoma 
in a likely manner that includes glycolytic inhibitors and 
those that inhibits tumor in hypoxic condition (e.g., 

gossypol) but are not discussed in this review. To manage 
such types of tumors, the zone of the focus is the use of 
combination therapy. Angiogenic-inhibitors in combination 
with chemotherapy could improve the chances of survival 
in Rb affected patients. Moreover, targeted therapies like 
p53, surviving, MiR-200a etc. are also effective in this regard 
because controlling such targets could greatly reduce tumor 
invasiveness and metastasis.

Limitations
This paper is a systematic review based on critical analysis 
of the existing research. This review may provide conjugate 
data about targets and agents used for Rb management.
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