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The role of mesenchymal stem cell 
therapy in traumatic brain injury: a 
review from basic research to clinical 
challenges
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ABSTRACT

Traumatic brain injury (TBI) is a focal injury with limited reliable treatment options. Despite the large volume of basic research into TBI 
(particularly on the complex pathophysiology and on the application of various techniques), the treatment of TBI currently remains a 
challenge due to the low efficacy of available therapeutic options. Recent studies have shown that stem cells possess the ability to aid in 
recovery from the damaging effects of the craniocerebral injury. Herein, we attempted to present a generalized critique for the role of 
mesenchymal stem cell therapy in TBI, its underlying mechanisms, and the scope for improvements in TBI treatment identified through 
preclinical studies, clinical studies, and other research in the light of previously reported literature. Finally, we summarized some novel 
strategies to overcome the clinical challenges in TBI recovery. Collectively, the major objective of this review is to highlight the to-date 
available findings regarding role of stem cell therapy in TBI and pave the way for the development of safe and efficient regenerative 
treatment modalities for TBI by comprehensive understanding the specific mechanism. 
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Introduction
Traumatic brain injury (TBI) is caused by an external 
mechanical force1 causing either temporary damage or 
permanent dysfunctions and ultimately results in severe 
cognitive, physical, and emotional disorders.2,3 The recent 
decade has seen a dire increase in the rate of TBI4 and 
which make it the third leading cause of death worldwide.5,6 
However, despite being a major cause of death and disability 
throughout the world7,8, to date, available treatments are 
only designed to combat the symptoms of primary injury to 
prevent the further progression of damage.8

TBI is categorized on the basis of clinical severity and is 
primarily assessed using the Glasgow Coma Scale (GCS).9,10 
According to this classification, a GCS score of 13-15 is assigned 
to mild TBI, while 9-12 of GCS score has been attributed to 
the moderate TBI, and a GCS notch of ≤8 indicates the severe 
TBI, respectively.10,11 Besides GCS, various imaging modalities 
are used to evaluate the severity of structural damage in the 
brain caused by TBI.

Although, for patients suffering from serious injuries, 
surgical intervention is critically required for the detection 
and management of high intracranial pressure.12 Whereas, 
brain stimulation, hyperbaric oxygen, and behavioral therapy 
are commonly applied clinical strategies to treat neurological 
dysfunction after TBI.13 However, to date, these strategies 
have not exhibited any satisfactory remedial efficiency. 
Meanwhile, the heterogeneity of patients and injury along 
with the wide range of its clinical manifestations remained 
the significant challenge for the development of effective 
treatment and diagnostic strategies for TBI.14 Therefore, the 
identification of reliable prognostic markers, an efficiently 
modified detection method and effective yet safe treatment 
are required for the management of acute and chronic 
injuries.9

Though accrued studies have provided the evidence that 
application exogenous stem cells [mesenchymal stem cells 
(MSCs) and neural stem cells (NSCs)], not only possess the 
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potential to migrate toward damaged brain tissues but also 
redeem the damaged cells via differentiation. Besides, MSCs are 
also known to release anti-inflammatory and growth factors, 
with potential to improve neurological function.13 Since bone 
marrow stem cells (BM-MSCs) and umbilical cord mesenchymal 
stem cells (UC-MSCs) are the most widely applied types of 
MSCs, clinical studies have illustrated that both BM-MSCs and 
UC-MSCs administrated via intravenous and lumbar puncture 
could significantly improve the damaged brain areas.1 However, 
the lack of targeted and effective therapeutic strategies remains 
a major challenge for researchers and clinicians. Hence, in 
the light of these above reported studies, here we aimed to 
review the previously reported studies to determine the role 
of stem cells in the context of TBI, to investigate the underlying 
mechanisms of TBI, to brief about to date available therapeutic 
strategies, to determine the emerging role of stem cell therapy 
while discussing the present challenges and future perspective 
in TBI treatment.

Molecular Mechanisms of TBI 
Generally, TBI is regarded as a cascade of acute or reticent 
mechanical dynamism which ultimately creates a hostile 
microenvironment by exacerbating inflammation, glial 
activation, and astrogliosis, which ultimately cause vascular 
injury and hypoxia resulting in neuronal tissue damage.15,16 
Although the recent decade has seen significant advent in 
the understanding of molecular mechanisms; however, 
comprehensive grasp on the precise molecular events and 
related biomarkers remained elusive.17 

Biologically, TBI is classified as a primary and secondary 
injury, wherein the primary injury indicates the direct 
exposure of mechanical injury that incidentally damage 
the normal brain function.1 Whereas a secondary lesion is 
associated with multiplex avalanche events at of molecular 
and cellular level resulting in death/necrosis of neuronal 
cells and tissues18, hence indicating the most crucial event 
in terms of long term management of TBI. Nonetheless, 
further investigations into secondary damage have revealed 
neuroinflammation, oxidative damage, reactive oxygen 
species (ROS) accumulation, cytokine activation, excitotoxicity 
as prominent mechanistic events that ultimately results in 
neuronal cell death (Figure 1)

Briefly, excitotoxicity is considered as the most critical 
even in the biology of TBI particularly in the context of 
secondary damage. While further investigation into the 
underlying mechanism indicates that onset of physical injury 
causes severe damage to the blood-brain barrier (BBB) which 
instantly enhance the glutamate levels, which persist for about 
24 to 48 hours.19 This sustained excitotoxicity and increased 
glutamate level provoke the spread of depolarization waves 
in patients.20 Additionally, it has been well established that 

excitotoxicity manifests a high intracellular concentration of 
calcium which results in the activation of catabolic enzymes, 
i.e., phospholipases, proteases, and endonucleases.6 Since 
phospholipases cause the damage of the cell by disrupting 
mitochondrial membranes, while protease activation results 
in DNA fragmentation due to disruption in endonucleases and 
cell cytoskeleton ultimately resulting in cell death via apoptosis 
or necrosis6,21, thus providing insight into its mechanism.

Nonetheless, neuroinflammation is another important 
mechanism manifesting the secondary damage in post-TBI, 
initiating directly after the onset of primary injury due to 
the activation of microglial (this event has been indicated 
as an essential mechanism not only for the reparation of 
neuronal damage but also to avoid the further damage due 
to pathogens).22 Further insight into the main molecular 
mechanism of neuroinflammation exhibits that activation 
of microglial cells in the brain not only results in disruption 
of BBB but also elevates the levels of other inflammatory 
mediators such as cytokines, complementary proteins in brain 
parenchymal tissues.21 While further studies have reported 
that the association between neuroinflammation and 
accumulation of ROS results in activation of crucial cellular 
events such as DNA oxidation, protein carbonylation, and lipid 
peroxidation. Eventually, changes in membrane permeability 
and fluidity occur that enhances enzyme leakage, resulting 
in caspase-mediated apoptosis.23-26 Hence, suggesting the 
pivotal role of oxidative stress in secondary damage post-
TBI by determining the disparity between antioxidants and 
ROS.27 Moreover, the activation and upregulation of cell-
cycle mediators such as c-myc and cyclins and reduction in 
the level of cell cycle inhibitors have also been indicated to 
accelerate the damaging effects of TBI.28 

While suppression of caspases and mitochondrial 
permeabilization in TBI speculate that autophagy could 
be a leading mechanism that regulates programmed cell 
death, therefore, it is also regarded as a compensation to 
inhibit apoptosis.29,30 Hence, the above-mentioned studies 
speculate that programmed cell death is the dominant 
mechanism of neuronal cell damage after the incidence 
of TBI.21 Nonetheless, increasing understanding about the 
moelcualr events and underlying mechanism has attracted 
researchers and clinicians to devise more efficient and safe 
therapeutic strategy for post TBI management.31 

Thus collectively suggesting the prerequisite for 
comprehensive understanding of precise molecular events 
is the most important steps toward the development of 
efficient therapeutic strategies.

Role of Stem Cell Therapy in TBI
The ability of MSCs to home at the injured site, differentiate 
into neuronal cells, and to cross the BBB, make them most 
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promising candidate to aid in therapeutic and restorative 
functions after TBI.32 Accordingly, Azizi et al.33 have 
demonstrated that MSCs engrafted to the injured brain 
site not only survived but also demonstrated the migratory 
potential similar to NSCs. Besides, another evidence was 
provided by Kopen et al.34 exhibiting that immuno-depleted 
MSCs exposure to the lateral ventricle of a neonatal mice 
model of TBI, results in progression of differentiated progeny 
of various cells with dermal origin, thus, suggesting MSCs 
as a valuable tool for treating neurological disorders. While 
Sanchez-Ramos et al.35 further confirmed that MSCs could 
potentially differentiate into cells similar to neuronal and glial 
cells regardless of coculture conditions.35 Another advantage 
of MSCs is their ability to reside at the site of injury, which 
could be specifically defined as “their ability being seized 
into cerebrovascular beamer of a tissue which further 
mediates the transmigration across the endothelium”36, thus 
suggesting the ability of MSCs to migrate toward the site 
of injury.37,38 Further evidence for the effectiveness of early 
exposure of stem cells after brain injury was provided by 
Barbash et al. 39 where they found that, after 2 days of MSCs 
infusion, an increased movement of MSCs was observed in 
the rat’s brain compared to that after 14 days. 

Nonetheless, the ability of MSCs to cross the BBB to repair 
the damage makes it an outstanding neurotherapeutic drug40,41 

since damage and disorganisation of BBB is considered as the 
most critical consequence of TBI.32 Accordingly, Steingen et 
al.42 have indicated that MSCs inarguably holds the potential 
to access the endothelial cell barrier of the BBB.43 While 
Matsushita et al.44 have suggested that the ability of MSCs to 
pass through the BBB could be attributed to the paracellular 
pathways in the brain, hence, suggesting MSC’s as the most 
promising candidate for TBI management. 

Additionally, growing evidence has reported the 
advantage of MSCs application to combat the damaging 
outcome of TBI.32 For instance, Anbari et al.45 demonstrated 
that the ability of MSCs to differentiate into neuronal and 
astrocyte like cells upon transplantation into the rodent 
model of TBI. Furthermore, it has also been found that 
differentiation of MSCs leads to a significant increase in 
neural growth, which further stimulates sensory and motor 
function improvement.43,45,46 

Interestingly, it has also been suggested that the intravenous 
administration of human Mesenchymal stem cells (hMSCs) 
derived secretome not only aid in decreasing the apoptosis 
but also provoke the release of vascular endothelial growth 
factor (VEGF).47-49 Hence, these findings reinforce the concept 
that MSCs could potentially aid in neural cell replacement 
as well in recovery of neural function.50,51 Classically, the 
regenerative ability of MSCs is attributed to the release of 

Figure 1. Systematic presentation of major molecular events and their downstream effects underlying TBI. Briefly, TBI is characterized as a primary 
lesion and secondary lesion, wherein, primary lesion directly results in brain dysfunction, while secondary damage is based on major molecular 
events i.e., excitotoxicity, neuroinflammation or cytokines activation, oxidative stress, and accumulation of ROS, which eventually results in cell 
death either by apoptosis, necrosis or autophagy.
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growth factors, i.e., glial cell line-derived neurotrophic factor, 
brain-derived neurotrophic factor, nerve growth factor, 
and VEGF.32 Besides, its underlying mechanism indicates 
the ability of MSCs to assist in upregulation in the level of 
growth factors (Ang-1, VEGF) and microangiogenesis13, which 
further promote the recovery from TBI. It is also important to 
mention that the main mechanism through which MSCs aid 
in damage recovery is through the release of these growth 
factors that mediate the differentiation of resident.52 Thus 
suggesting that the administeration of MSCs derived factors 
solely possess the potential to promote the recovery after 
the incidence of TBI even in the absence of transplanting 
cells themselves.32 

Preclinical Studies Using MSCs for TBI Treatment
Recently, various animal models and in vitro computational 
modeling of TBI have contributed to the current understanding 
of post-traumatic events.53 Therefore, animal modeling 
remains crucial for a comprehensive understanding of the 
complex pathophysiological mechanisms correlated with 
neurological conditions, for evaluating novel therapeutic 
agents, to ensure the safety of clinical trials, and to predict 
the degree of success.53 

Accumulating evidence from preclinical studies have 
reported the application of MSCs in TBI models and 
demonstrated the regenerative potential of MSCs to boost 
the damage recovery via secreting trophic factors which 
allow the residing progenitor cells to replace damaged 
cells and ultimately by the inhibition of inflammatory 
cascade.54 For instance, a preclinical study has shown that 
MSCs application can not only reduce the expression of 
inflammatory molecules but also enhance the reparation of 
intracranial aneurysms.55 

Besides, further evidence from preclinical studies 
using rodent TBI models have suggested that MSCs can 
specifically home to the site of injury in the brain tissue 
but also differentiate into neurons and astrocytes like cells 
to mend the damaged brain tissue which ultimately aid in 
the functional revovery.56 Further evidence by Zhang et.al.50 
has reported the significant improvement and prominent 
decrease in brain water content of rat model of TBI after 
transplantation of MSCs.50 Besides, they also reported that 
MSCs application of MSCs can significantly reduce the neuro-
inflammation in the injured cortex region of rodent brain 
by decreasing the proliferation of macrophages, microglia, 
neutrophils, apoptotic cells, and reducing the level of 
proinflammatory cytokines.50 Similarly, Guo et al.57 used TBI 
mice model to demonstrate that MSCs transplantation could 
significantly aid in the recovery of the neurological function, 
amend the memory and learning ability while decreasing the 
neuronal apoptosis.57 The fact that rodent models are the 

most frequently used animals to represent different injury 
mechanisms associated with human TBI in preclinical trials; 
however, higher species with the anatomical and functional 
similarity of the brain with the human being could bring a 
better outcome for translation to clinical trials. Therefore, 
before the initiation of clinical trials, an effective treatment 
in rodents should be tested by confirming its efficacy in 
large animal models that could closely emulate the complex 
pathogenesis of TBI in humans.53 For instance, the application 
of stem cell therapy in the swine model of TBI demonstrated 
that early intervention of only a sole dosage of MSC-derived 
exosomes preeminently abate the size of brain injury as well 
as reduce the swelling in lesion area which could be attributed 
to the reduction of inflammatory response and ultimately 
results in reduction in blood-based cerebral biomarkers 
to restore the integrity of BBB.58 Despite these above-
mentioned advantages, a comprehensive understanding of 
animal behavior, as well as the deep knowledge about the 
undergoing molecular mechanisms, are required to devise 
an effective strategy for the translation of these results from 
preclinical into clinical trials.

Clinical Trials Using Stem Cells for TBI Treatment
Successful resulting data from preclinical studies have 
largely inspired scientists and clinicians to evaluate the 
clinical efficacy of MSCs transplantation. However, less 
than 4% of intravenously injected MSCs could reach the 
arterial circulation.59 Although no adverse events have been 
illustrated regarding the isolation or transplantation of MSCs, 
yet, dose-related pulmonary toxicity remained an the major 
concern upon administrating a dose of < 9 × 106 cells/kg.60 Thus 
indicating a rate limiting aspect that should be overcome in 
future trials assessing efficacy. Besides lumbar puncture and 
intracerebral transplantation of MSCs have not exhibited any 
unfavorable events during isolation and transplantation of 
autologous MSCs.61,62 Although intravenous administration of 
BM-MSCs has been attributed to the improved recovery and 
reduction in systemic inflammatory markers in the blood.60,63 
Yet, its application could not achieve any prominent or 
successful outcome in context of functional recovery after 
the application of autologous BM-MSCs therapy via lumbar 
puncture in TBI patients.62 

Besides, MSC’s isolated from other sources including 
human umbilical cord blood (hUCB-MSCs) have also been 
widely implicated in MSC-based therapies. For instance, 
recently a clinical trial investigating the role of allogeneic 
hUCB-MSCs in the recovery of TBI sequelae, randomly 
recruited 40 patients to treat with hUCB-MSCs via lumbar 
puncture.64 Intriguingly, their data indicated that allogeneic 
administration of hUCB-MSC via lumbar injection could also 
be a safe strategy to attenuate the chronic motor disability in 
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TBI patients.65 Hence, providing a basis for future researchfor 
application of hUCB in TBI management.64 

Nonetheless, despite encouraging outcomes 
from preclinical and clinical trials based on complex 
pathophysiology and molecular mechanism of TBI, in context 
for the application of stem cell therapy in its treatment, there 
is still great room left for the improvement in therapeutic 
strategy in terms of its efficacy and safety which can promote 
the functional recovery of brain tissue. The major factor 
could be the deficit ability of mammalian neuronal tissue 
to regenerate itself which ultimately appeal to the external 
therapeutic assistance.

Overcoming Clinical Challenges
It has been indicated that clinical trial studies have 
encountered little success due to inappropriate 
administration methods. Yet there is no common standard 
for the assessment of outcome measures. Thus, overcoming 
the lack of an appropriate method of administration and 
optimal timing of stem cell delivery by using clinically 
effective methods remains the leading challenge in TBI for 
the neuroscience research community as well as for the 
pharmaceutical and drug development industry.53 Although 
an increasing amount of research has been organized to 
determine the effective routes for stem cell delivery i.e., 
direct route, intravenous, intracerebral, and intra-arterial 
route; however, these methods exhibit their pros and 
cons. For instance, despite being the most convenient 
method to approach the circulatory system66,67, the first-
pass pulmonary sequestration is considered as major 
shortcoming of intravenous application.39,68 Whereas, intra-
arterial transplantation hold the advantage of local induction 
of stem cells via circumventing the high pulmonary first-pass 
effect.69 While intracerebrally transplanted stem cells have 
demonstrated the significant migrating ability toward the 
injured site, which could be attributed to enhanced load 
of the stem cell at the site of disease/injury.70 Accordingly, 
a study by Xiong et al.71 has demonstrated that intranasal 
(i.n.) transplantation of MSC via nasal mucosa either by 
cribriform plate permeation or via uptake by the olfactory 
pathway to the tissues in the brain72, offers the most invasive 
and effective route. While Danielyan et al.73 further provided 
the evidence for the presence fluorescently labeled MSCs in 
the brain tissues even after 1 hour of i.n. administration in 
a rodent TBI model. Nonetheless, Galeano et al.74 indicated 
that ensnarement of cells in the nasal cavity is the major 
drawback of this procedure. Thus suggesting the requirement 
of effective safe and minimally invasive delivery method.37 

Nonetheless, recently reported studies have illustrated the 
crucial role of exosomes derived from MSCs in augmenting 
their therapeutic efficacy.75,76 Exosomes have been indicated 

to77 play a vital role in intercellular communication.78 A shred of 
fascinating evidence has illustrated that MSC-derived exosomes 
hold similar therapeutic efficiency as their parent MSC.71,79,80 
Concordinlgy, Zhang et al.76 has shown that i.v. injection of 
exosomes could effectively improve the functional recovery in 
rats after TBI, yet their remedial effects are attributed to the 
cultural condition of parent cells i.e., 2D versus 3D81, and their 
cargo i.e., mRNA, miRNA, lncRNA, mitochondrial DNA, and 
protein.71 Collectively, these properties make the application 
of exosomes as an appealing therapeutic strategy as compared 
to their parent MSCs.82 In addition to exosome based 
therapy, recent studies have also indicated the application of 
genetically modified MSCs to produce cytokines, chemokines, 
and soluble growth factors.49 Peculiarly, growth factors have 
been reported to remarkably enhance the survival of stem 
cells as well as neuronal cells by aiding in neurogenesis and 
angiogenesis process at the site of injury.45 Although these 
novel strategies are still under investigation, yet they provide 
an attractive and effective source that can not only overcome 
the cell administration issue but also provide an alternative 
acelluar therapeutic strategies to combat the effects of TBI.

Conclusion
Collectively, this review suggests that several factors, i.e., 
scarce understanding about the route of cell delivery, 
lack of understanding about after effects and potential 
complications, obscure ethical concern particularly due to 
lack of clinical data, as the major hurdle in clinical application 
of regenerative medicine for TBI. Thus keeping in view, 
the scarce clinical trails using stem cells for TBI treatment, 
multicenter set of future study aiming at randomized 
prospective is prerequisite, which could potentially suggest 
the suitable future therapeutic modality for TBI. Hence, 
comprehensive knowlegde about the role of underlying 
mechanism combined with translation of these novel 
findings could aid in the development of new therapeutic 
strategies for TBI.

Limitations of the study
Due to scarce data from relevant clinical studies, the present review 
does not encompass the detailed clinical outcome. However, a 
brief revelation review about the current situation and possible 
strategies would be interesting for research scientists and clinicians 
to design their further studies by keeping in view the limitations and 
advantages of to-date available strategies.
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